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Introduction
One of the domains that has been radi-
cally altered by the ubiquity of digital 
technology is algorithmic and quantitative 
modelling. Over the last fi ve to 10 years, a 
variety of software modelling platforms 
have been developed that allow users to 
create models using diagrammatic inter-
faces. This has largely dispensed with the 
need for individuals interested in creating 
models to be experts in computer science 
and programming. Instead, domain-spe-
cifi c experts can concentrate on structur-
ing their expansive knowledge in a way 
that accurately describes known processes 
and associated interactions, and that can 
be readily used in a digital environment.

In addition to having computer experts 
design less technical software model-
ling support platforms, the widespread 
use of digital technology has increased 
the confi dence of even technophobic us-
ers to employ computers in increasingly 
sophisticated ways. Hence individuals 
from non-quantitative disciplines such as 
natural, biological, and life sciences have 
an enhanced belief in their own ability to 
learn and appropriately use sophisticated 
modelling software.

Hence conceptually computer experts 
and biological science practitioners have 
moved closer to a digital centre. The latter 
are nonetheless generally not completely 
at ease with quantitative modelling. The 
goal of this paper is to highlight and ex-
plain some basics about modelling in such 
a way that non-modellers’ understanding 
of modelling is enhanced. The core con-
cepts are presented as questions focused 
on three areas: model creation, data issues, 
and model structure.
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Question 1 (Model Creation): What 
is the model for?
Models are essentially a means of simpli-
fying reality. And in a modelling context, 
reality is simplifi ed for two different rea-
sons.

A. Process or system understanding
First, one may be seeking a means by 
which one can better understand a proc-
ess. Someone might fi rst collect data about 
the presence or concentration of a particu-
lar insect pest over a large area. Such data 
can be converted into useful information a 
number of ways. For example, one might 
display the data spatially to understand 
where pest presence is most prominent. 
Such a display would inevitably lead to 
observations or suppositions about the 
concentration of the pest relative to other 
factors such as land-use or distance from 
roads. Models are a way to summarize 
such interconnections in order to under-
stand, for example, if the concentration of 
the insect pest is related to rainfall. One 
might add additional explanatory/related 
factors to understand if the relation be-
tween the concentration of the insect and 
rainfall is impacted by temporal seasonal-
ity. 

Models developed to understand a 
process or a system are generally created 
using statistical techniques that fi t equa-
tions to the data collected. Regression 
analysis, for example, produces an equa-
tion that represents the best line through a 
set of points with the value of a particular 
coeffi cient indicating the relationship be-
tween a predictor variable – e.g., rainfall 
– and the output variable of interest – e.g., 
concentration of insects. Techniques such 
as regression also indicate the statistical 

strength of the relationship between two 
variables. 

Hence, this is a data-driven modelling 
approach that produces one or more equa-
tions that describe the strength and nature 
of relations inherent in a set of data.

B. Prediction or scenario evaluation
Models developed for process or system 
understanding are often of limited use for 
prediction. For example, they may be con-
strained to a particular climate range or 
insect pest. In contrast, models developed 
for prediction are generally more widely 
applicable at a ‘cost’ of being less accurate 
for a particular (data-rich) situation or ge-
ographical area. Having said that, predic-
tive models can be improved for specifi c 
situations by calibrating a generic model 
structure for a particular area or pest – pro-
vided suffi cient data are available to do so, 
of course.

Predictive models are often systems-
based and are concerned primarily with 
developing generalized holistic models 
and therefore place emphasis on under-
standing the linkages among different 
components. In the context of developing 
a predictive model for a particular pest, 
a modeller might be concerned with the 
generalities of how the insect develops in 
relation to rainfall and spring tempera-
tures, and also how winter temperature 
impacts the spring population. This is in 
contrast to examining purpose-collected 
data using data mining techniques that in-
dicate only what the data set shows.

Such models are developed using struc-
tured modelling platforms based on dia-
grammatic interfaces that rapidly allow 
connections in a system to be designed 
and created. Predictive models also are 
dependent on the strength of the body of 
science available to describe the dynamics 
of the phenomenon being modelled. For 
example, a model that identifi es only that 
a relationship does exist between an insect 
and rainfall is of limited use; the specifi c 
nature of the relationship must be well 
understood.

The result of a predictive modelling ap-
proach is a model structured to describe 
pest behaviour that can be calibrated and 
will permit a range of scenarios to be 
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evaluated. Predictive models embody gen-
eralized knowledge about a phenomenon 
rather than being confi ned to a particular 
instance of a phenomenon. As such, they 
provide a means to query what will oc-
cur to pest numbers if spring temperature 
changes or winter survival decreases, for 
example.

C. Making a link between process 
understanding and predictive models
Clearly predictive models rely on funda-
mental research for their basic knowledge, 
and knowledge developed to understand 
processes has a wider impact if incorporat-
ed into a systems-based predictive model. 
However, data requirements subtly affect 
the suitability of process understanding 
models to be used in predictive models. 
Suppose that collected data suggest that 
a particular insect that overwinters on 
the ground requires a certain soil type as 
classifi ed based on fi eld observation. To 
create a regional model for the insect that 
includes ‘capacity for overwintering’, it 
would seem relatively simple to use in-
formation from soils maps to determine if 
the required soil type is present or not at a 
given location. However, the information 
associated with the soils map is based on 
different data collection techniques, may 
be based on a different taxonomy than 
was used on the ground, and may not as-
sess soil characteristics in the same way 
as was done on the ground. In short, the 
data used to create the understanding of 
the process is not available as an input into 
the predictive model.

This point is fundamental to the impor-
tance of understanding whether a model 
is being created to understand a process 
or system, or if it is being developed for 
predictive purposes. Though it is diffi -
cult for scientists to accept, if prediction 
is the goal of a particular model, then the 
only variables/components that can be 
included in the model are those for which 
input data will be available. This means 
that a number of variables that might be 
included in a process/system understand-
ing model must be left out of a predictive 
model even if those variables are under-
stood to be highly related to the behaviour 
of the phenomenon/system of interest 

Question 2 (Data Issues): What 
if my data do not support my 
modelling needs?
The fi nal point of the previous section 
presents considerable diffi culty for some-
one who has gained enhanced understand-
ing of a process through the creation of a 
model, but fi nds that the model has little 
predictive use because it is dependent on 
data that are available for the situation or 
area of interest. In most cases, collecting 
the appropriate data for the entire situa-
tion/area of interest is not a viable solu-
tion. In the soil example used earlier, it is 

simply not economically feasible to visit 
every location in a region to create a soils 
map using the ground-based techniques 
that were used to collect the original data.

Two alternatives are possible. First, one 
can evaluate the suitability of available 
data to serve as a surrogate for the desired 
data. For example, one may have evaluat-
ed soil type on the ground by assessing the 
percent of sand in the top 10 cm of the soil 
profi le. The soils maps may record the soil 
structure for the top 10 cm, or the percent 
of sand in the surface horizon regardless 
of depth. The relationship of the ground-
based measurements can be compared 
against both of these by overlaying the 
locations of the fi eld-based observations 
on the soils map, extracting the soils map 
information for each, and analyzing the 
data. Note that in doing this, it is unneces-
sary that the two sets of data give equiva-
lent estimates – only that the relationship 
between the two is statistically strong. If 
so, the reality that soil map information 
consistently overestimates sand content 
by 10%, for example, is unimportant; for 
predictive purposes sand content from the 
soils map need merely be reduced by 10% 
to have useful data.

Second, one can seek surrogate infor-
mation obtained from an understanding 
of relations among ancillary factors. For 
example, it may be known that the amount 
of sand is related to the underlying ge-
ology and the steepness of the terrain 
around a given location as determined 
by a digital elevation model (DEM). Us-
ing the fi eld-based data for calibration, it 
may be discovered that these factors are 
related to weathering and erosional proc-
esses in some poorly understood yet sta-
tistically signifi cant way. If so, one needs 
only have a map of underlying geology, 
a DEM, and the mathematical expression 
of the relationship, and one can produce 
the information required for predictive 
modelling.

Question 3 (Model Structure): Does 
my model need to be very complex?
The second approach described in the pre-
vious section adds a level of complexity to 
a model. Instead of having a simple input 
– percent sand in the top 10 cm of a soil 
profi le – one has a model that produces 
that input. The model used for percent 
sand may in turn use other models to de-
scribe its inputs. And if one considers a 
multi-factor model and all of the potential 
inputs and interactions among the various 
components, models can rapidly become 
quite complex.

Such complexity may be highly un-
desirable. Generally speaking, as model 
complexity increases, general usability 
decreases. This latter is a consideration 
particularly when a model is being devel-
oped with the specifi c goal of being widely 
distributed – particularly to non-experts.

Of equal importance is model perform-
ance, and this impacts the necessary and 
appropriate level of complexity in two 
ways. First, as model complexity increas-
es, model precision generally decreases. 
Because relationships in natural systems 
cannot be modelled with perfect precision, 
increasingly complex models connect one 
imprecise relationship with another, and 
another, and… This also causes the impre-
cision in individual model components to 
compound. Second, additional complex-
ity may have little impact on model im-
provement. For example, one might never 
consider developing an insect pest model 
without temperature – something that is 
known to be affected by elevation as well 
as general weather patterns. However, the 
inclusion of elevation may only improve 
the model slightly. In model parlance, 
this means that the phenomenon being 
modelled has low sensitivity to elevation 
even though it has high sensitivity to tem-
perature which is in turn (paradoxically) 
related to elevation. If a phenomenon is 
not sensitive to a particular factor – even 
if that factor on its own is known to be 
highly related to the behaviour of the 
phenomenon being modelled – there is 
little point in including that factor in the 
model.

Increasing model complexity may also 
impact its accuracy. The nature of ground-
based studies is that they focus on a lim-
ited number of factors that can be studied 
through direct data collection. This means 
that the impact(s) on a phenomenon of 
interest of interactions among factors are 
often not understood. Creating complex 
models sometimes has the effect of de-
scribing the impact of factor interaction 
on a modelled phenomenon when no em-
pirical knowledge about the true impact 
exists. If this occurs, the accuracy of model 
outputs will be unknown. The author is 
aware of a number of hydrological mod-
els that estimate streamfl ow, recharge, and 
other factors based in part on vegetative 
evapotranspiration. Vegetative evapotran-
spiration is in turn estimated by crop and 
forest growth models. The net effect is that 
the models estimate different amounts of 
vegetative water consumption depending 
on what crop is being grown or tree spe-
cies is present in a forest even though these 
have not been explicitly studied.

Conclusions
Advances in computer technology and in 
the comfort with which experts in biologi-
cal sciences use computers are facilitating 
an increasing capability for the creation of 
quantitative models developed for a va-
riety of purposes. The fi rst step in model 
development is determining if a given 
model is being used to better understand 
a particular process or system, or if it is 
to be used for prediction. The goal of the 
model will impact the data that can be 
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used for model development and possi-
bly the complexity of the resulting model. 
However, practitioners are well advised 
that increased model complexity will not 
necessarily lead to better or more accurate 
models.
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Summary
Australia is now host to many thousands 
of introduced plant species, and about 
3000 of these have established self-sus-
taining populations in the wild. Of these, 
approximately 450 are classifi ed as inva-
sive weeds nationally or regionally, and 
are being targeted with control measures. 
Two questions arise in the context of cli-
mate change: what changes might occur 
in the distribution of the 450 species 
known to be highly invasive, and which 
species in the pool of 3000 might emerge 
to become future serious pests. We are 
applying an advanced modelling tool, 
MaxEnt, to provide a strategic overview 
of a large portion of the 450 highly inva-
sive species. Preliminary results suggest 
differing responses of weed species in 
northern and southern Australia linked 
to predicted major shifts in rainfall pat-
tern.

Introduction
Since the earliest European contact with 
the Australian continent in the late 16th 
Century, a steady stream of introduced 
species have been entering Australia’s eco-
logical communities with varying impacts 
on the native biota. Several thousand plant 
species have been introduced deliberately 
either as agricultural or horticultural stock, 
or as ornamental garden plants (Groves et 
al. 2005) or accidentally. Through complex 
pathways involving genetic change, devel-
opmental responses to new environments 
and chance dispersal events, a portion of 
these introduced plants have become es-
tablished as self-sustaining populations in 
the wild. Current estimates suggest that at 
least 3000 plant species have become nat-
uralized in Australia (Groves et al. 2003) 
with approximately 450 of these now clas-
sifi ed as highly invasive pests. The balance 
of the 3000 naturalized species represents 
a pool from which it is likely that new in-
vasive species might emerge, especially 
given that many of these are garden es-
capes and still available for sale or grown 
in gardens (Groves et al. 2005).
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The mechanisms by which an intro-
duced plant species makes the transition 
following introduction to establish self-
sustaining wild populations are complex 
and not fully understood. They appear to 
involve a combination of genetic changes, 
phenotypic and developmental changes, 
and ecological interactions (both positive 
and negative) within the new environ-
ment. It is clear that the climate experi-
enced by populations of a species is a pow-
erful driver of ecological and micro-evo-
lutionary processes. Climate directly in-
fl uences a species’ establishment, growth, 
reproduction, and survival. Climate also 
has indirect infl uences on invasive species 
via its impact on species within the eco-
logical communities of which an invasive 
species is a part. Climate data is thus an 
obvious candidate to use as a surrogate 
for detailed ecological models of how a 
species responds to its environment, with 
the added advantage that modelled cli-
mate data is available in GIS coverage for 
current climate conditions. Future climate 
models also allow us to make predictions 
of distributions under certain constraints 
or caveats.

Given the paucity of detailed genetic, 
physiological or population data for the 
majority of the 3000 naturalized species, 
other forms of inference about likely 
changes in distribution and abundance 
are required. Species distribution models 
(SDMs) represent one tool that may assist 
our management of invasive plants. Not 
only can SDMs guide our understanding 
of current distributions and the response 
of species to the cumulative infl uences of 
past conditions, they offer the prospect of 
some degree of prediction under novel 
environmental conditions such as climate 
change.

The motivation for our project is two-
fold. First, we wish to investigate through 
experimental methods the way in which 
key groups of invasive plant species will 
respond to climate change, particularly 
to increased CO2 concentration. This 


